
Meta-Data switching - High Performance Data
Security filtering

Mark Stocks and David Finlayson
Director Designing IT Solutions

marks@designingITS.com

Abstract- The primary enterprise risk mitigation mechanisms
are the perimeter defenses, the DMZ and role-based security.
Role-based security is the dominant enterprise mechanism to
restrict a user’s access to data by routing the user to the correct
process or application. There are a number of enterprise
weaknesses in the implementation of role-based security. We
introduce our meta-data switching framework, specific high
performance switching algorithms that exploit mathematical
properties encoded into security labels, attached to data. The
switching provides row level security filtering capability. We give
an example of such an algorithm to show the features of meta-
data switching.

I. INTRODUCTION

The sharing of information is a key human activity and the
need-to-know and the need-to-share are the two security
dimensions of information that are in constant tension.

The need-to-share is the dimension of allowing others to
review and contribute to some collection of data and
information while the need-to-know is the balancing force of
allowing a subset of people access that should have access.

Our data security consulting practice brings us into contact
with numerous organisations and they all report the same class
of data and security problems:
¥ The external hacker searching for vulnerabilities in

perimeter defences
¥ Internal people looking at information they shouldn’t have

access to
¥ The loss of information, data breaches of information.

Private and sensitive information leaving the organisation
to unauthorised third parties. Sometimes accidental and
sometimes not

II. THE CURRENT PROBLEM

The primary enterprise risk mitigation mechanisms are the
perimeter defences, the DMZ. The construction of perimeter
defences using firewall technology to keep out external
hackers, viruses and malware.

In addition enterprise X500 directory technology such as
Light Directory Access Protocol (LDAP) and Active Directory
(AD) are used to functionally profile the valid user based on a
valid set of roles.

The control mechanism of role-based security [5] is the
dominant enterprise mechanism to restrict a user’s access to
information by routing the user to the correct process or
application. The application is in turn responsible for reading

and writing data (not the user). It is the application that must
ensure that the user is aligned with the roles and rights
assigned to them.

There are a number of weaknesses in the implementation of
role-based security to protect data and information:
¥ There is the possibility of inappropriate back doors left

open to enterprise data. The classic case is a system-based
connection being created for use within an application, and
then the connection being exploited by an unauthorised
person. For example an unauthorised power user
downloading sensitive data using a simple desktop
package like Microsoft excel, connected via the ODBC
connection to the database.

¥ The second weakness is that data security is only as good
as the application written against the database. Developers
are not data security specialists yet we expect them to
ensure data security for user access by encoding the row
level data access controls within their applications.

¥ Thirdly, developing security in each application requires
security to be developed multiple times over the same data
set where multiple applications access the same data:

o The application approach multiplies the risk of
security issues, whilst diluting the resources
available to work on security.

o It also increases the amount of both initial
development, and ongoing maintenance work that
needs to be performed.

o In the situation where the actual security regime
needs to change (such as when two companies
merge), this can become a serious issue. In short
the approach is both inefficient and risky.

BACK DOOR WEAKNESS USING ONLY ROLE BASE SECURITY ACCESS

The approach of ‘application’ security is incongruent with
other layers of security that are provided at the enterprise
infrastructure level:
¥ We don’t expect the application developer to ensure that

firewall like functionality is built into their application, or
to open and close communication ports. The application
developer can rely on communication infrastructure.

¥ Likewise we don’t expect the application developer to
program functional routing and role based profiling as this
again is provided as a layer of LDAP / AD enterprise
infrastructure.

Organizations need an enterprise infrastructure approach to
data security and privacy at the application level. This is no
different from the approach taken in every enterprise to the
other aspects of IT security. In our consultancy we have
constructed such an approach that wraps around any RDBMS.

This paper introduces a meta-data switching framework and
the specific mechanisms needed to overcome the role-based
weaknesses as outlined above. We bring the concepts of role-
based security together with the notion of a trusted system,
constructing a more complete and secure model. Our approach
is based on an extension of the Bell-La Padula Model [2] and
the Clark-Wilson model [3] where we exploit properties of
Meta-data rather than the traditional bit vector approach. We
have found enormous performance gains by directly exploiting
mathematical properties encoded into Meta-data.

DATA SECURITY AS A LAYER INFRASTRUCTURE AROUND THE RDBMS

III. META DATA SWITCHING FRAMEWORK

The diagram below represents the integration of the role-
based approach and our meta-data switching that we have
developed. The reader will note the classical trusted system
components in the integrated model:
¥ Subject - The security label of the active computer system

entity that can initiate requests for resources. [1]
¥ Object – The security label of the passive computer system

data resource [1] the subject wants access to.
¥ Dominance function - a binary relation on the set of

security labels that is called dominates, such that if the
Subject’s security label ‘dominates’ the Object’s security
label, access is granted to the Subject.

INTERACTION BETWEEN ROLE-BASED SECURITY AND THE DOMINANCE

RELATION - A COMBINED TRUSTED SYSTEM & ROLE BASED APPROACH

The accepted method of representing security meta-data is

using bit-vectors. Our encoding and decoding mechanism
breaks away from the traditional bit vector approach, which is
low level and easy to compromise.

In contrast security labels consisting of meta-data encoding
containing mathematical properties provides:
¥ A level of obfuscation of the actual security semantics and
¥ High speed switching characteristics such that row level

security around the relational database is now practical.
We have patented [6] a number of algorithms and have

tested some of these as a SQL wrapper around various
RDBMS engines. One test comprising more than 300 million
rows of data on a Teradata cluster with small sub second
performance overheads being experienced to the actual time
taken for the SQL queries to run.

The same algorithms could also be applied at the operating
system level and could even be embedded in the RDBMS
engine itself, communication devices and web servers.

A Meta-data switching framework for security has the
following properties:
¥ There is a mathematical property about the data that is

exploited and used for switching.
¥ Multi-Level security semantics is encoded into metadata

and results in a single label.
We will demonstrate a simple Meta-data switching

framework using ordinal numbers and the ‘sort-order’
functions that are found in any programming language. We
will demonstrate the approach using Python code. Python is as
close to executing pseudo code as can be found. It is simple to
understand and easy for the reader to follow.

The example we provide using ‘sort-order’ is for
demonstration purposes and is not recommended as an
industrial strength solution. We have developed and patented
other algorithms [6] exploiting far better mathematical
properties than the simple ‘ordinal number’ property.

First we formally define security labels and the dominance
function [1][2][4].

Security labels are the primary meta-data associated with
either an Object of a Subject. A Security label classically is
defined as follows:

labels = levels ×℘(categories)

I.e. the set of labels is equal to a cross product of ‘the set of the
levels’ and ‘the power set of categories’.

Where the level is a member of a set of classifications like
‘board’, ‘seniorExec’ or ‘staff’ such that

board ≥ seniorExec ≥ staff

And where a category is a member of a set of need-to-know
compartments like ‘marketing’, ‘IT’, ‘production’.

For example (using a commercial example):

levels = board, seniorExec, staff , public{ }
category = {marketing, IT , production,accounts}
Ρ(categories) = ∅,{marketing},{IT},{marketing, IT}........etc{ }

Continuing the example; three possible ordered pairs from the
cross product that make up the labels include:

(board,{marketing, IT})
(seniorExec{marketing, production, IT})
(staff {accounts})

A binary relation on the set of labels called dominates is
introduced. A subset of the cross product of labels × labels :

 subject ⊆ labels and object ⊆ labels

When an ordered pair of labels (subject,object) is an element
of the set of labels that dominates we say that

(subject,object)∈ dominates

The dominance relation is defined as follows:

∀(x1∈subjects, x2 ∈objects) : (x1, x2)∈dominates ⇔

levels (x1) ≥ levels(x2) and
category(x1) ⊇ category(x2)

Hence the following are all true statements from the
commercial label example above:

((board,{marketing, IT}),(staff {marketing}))∈dominates
((board,{marketing, IT}),(staff {production}))∉dominates
((staff ,{marketing, IT}),(seniorExec{marketing}))∉dominates
((seniorExec,{marketing, IT}),(staff {marketing}))∈dominates
((board,{marketing, IT}),(board{marketing}))∈dominates
((board,{IT}),(board{marketing}))∉dominates

A Meta-data switching framework that would implement the

formal definition has the following properties:
¥ There is a mathematical property about the data that is

exploited and used for switching.
¥ Multi-Level security semantics is encoded into metadata

and results in a single label.

In terms of our first definition - a meta-data switch needs to

exploit a mathematical property; the Python Language directly
supports ordinal numbers:

>>>	
 ord('a')	
 	

>>>	
 97	
 	

>>>	

>>>	
 ord('b')	
 	

>>>	
 98	
 	

>>>	

>>>	
 'b'	
 >	
 'a'	
 	

>>>	
 True	
 	

>>>	

>>>	
 'a'	
 >	
 'b'	
 	

>>>	
 False	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

The dominance algorithm presented below directly exploits
the ordinal number property of the Python programming
language.

The second definition - Multi-Level security semantics is

encoded into metadata and results in a single label. The steps
are as follows:

First - we set-up the framework as a series of maps (Python

dictionary structures)

>>>	
 #	
 Security	
 labels	

>>>	
 #	
 define	
 a	
 map	
 of	
 documents	
 based	
 data	
 	

>>>	
 #	
 classification	

>>>	

>>>	
 classification	
 =	
 {'top-­‐secret':'e',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'secret':	
 'd',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'highly-­‐protected':'c',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'unclassified':'b',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'public'	
 :	
 'a'}	

>>>	

>>>	
 #define	
 a	
 map	
 of	
 documents	
 based	
 on	
 	

>>>	
 #organisation	
 Hierarchy	

>>>	

>>>	
 level	
 =	
 {'board-­‐level'	
 :	
 'c',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'executive'	
 :	
 'b',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'staff'	
 :	
 'a'}	

>>>	

>>>	
 #define	
 a	
 map	
 of	
 documents	
 based	
 on	
 hierarchy	

>>>	
 #of	
 location	

>>>	
 location	
 =	
 {'global'	
 :	
 'd',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'country'	
 :	
 'c',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'state'	
 :'b',	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 'county'	
 :	
 'a'}	

Second – we will encode our security semantics as a series
of characters that can be used in some kind of ordinal number
test that will form the basis of our dominance function. We
define an encoding function as follows and use this to encode
the security semantics (the meaning) into the security labels.

>>>	
 #	
 define	
 a	
 simple	
 encoding	
 function	

>>>	
 def	
 encode(aClassification,	
 alevel,	
 alocation):	

>>>	
 	
 	
 	
 clasn	
 =	
 classification[aClassification]	

>>>	
 	
 	
 	
 levl	
 =	
 level[alevel]	

>>>	
 	
 	
 	
 locn	
 =	
 location[alocation]	

>>>	
 	
 	
 	
 return	
 clasn	
 +	
 levl	
 +	
 locn	

>>>	

>>>	
 #	
 define	
 a	
 simple	
 decoding	
 function	

>>>	
 #	
 we	
 will	
 leave	
 this	
 to	
 the	
 reader	

>>>	
 	

>>>	
 #	
 lets	
 encode	
 some	
 values	

>>>	

>>>	
 print	
 encode('top-­‐secret',	
 'board-­‐level',	
 'global')	

>>>	
 ecd	

>>>	

>>>	
 print	
 encode('secret',	
 'staff',	
 'county')	

>>>	
 daa	

>>>	

>>>	
 print	
 encode('public',	
 'staff',	
 'state')	

>>>	
 aab	

Note the encoding example ('top-secret', 'board-level',
'global') is translated to ‘ecd’. Also note that ‘ecd’ is
meaningless to the casual observer unless one understands
ordinal number sorting is being utilized.

The ordinal number algorithm is a simple approach, but
demonstrates the principles that we want to convey. We have
developed and patented other industrial strength encoding
algorithms where components of the algorithms can be kept
secret with the encoder (Thus enabling further layers of
obfuscation). The approach can also be combined with
encryption if the transmission of security labels is required.

Third - A dominance function is introduced to allow or

disallow the Subject access to the data / information Object:
	

	

>>>	
 #	
 define	
 a	
 simple	
 ordinal	
 dominance	
 function	

>>>	
 def	
 dom(aSubject,	
 aObject):	

>>>	
 	
 	
 	
 	
 count	
 =	
 0	
 	
 	
 	

>>>	
 	
 	
 	
 	
 while	
 1:	

>>>	
 	
 	
 	
 	
 	
 	
 	
 #	
 Object	
 String	
 and	
 Subject	
 string	
 need	
 to	
 be	

>>>	
 	
 	
 	
 	
 	
 	
 	
 #the	
 same	
 size	

>>>	
 	
 	
 	
 	
 	
 	
 	
 if	
 len(list(aObject))	
 <>	
 len(list(aSubject)):	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 False	

>>>	
 	
 	
 	
 	
 	
 	
 	
 #Check	
 for	
 end	
 of	
 Subject	
 String	
 and	
 return	

>>>	
 	
 	
 	
 	
 	
 	
 	
 #True	
 if	
 found	

>>>	
 	
 	
 	
 	
 	
 	
 	
 elif	
 count	
 ==	
 len(list(aSubject)):	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 True	

>>>	
 	
 	
 	
 	
 	
 	
 	
 #Use	
 sort	
 order	
 test	
 	

>>>	
 	
 	
 	
 	
 	
 	
 	
 else:	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 list(aSubject)[count]	
 <	
 \	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 list(aObject)[count]:	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 False	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else:	

>>>	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 count	
 +=	
 1	
 	

>>>	

>>>	
 #some	
 simple	
 dominance	
 tests	
 	

>>>	

>>>	
 dom('bbb','aaaa')	
 	

>>>	
 False	
 	

>>>	

>>>	
 dom('bbb','aa')	
 	

>>>	
 False	
 	

>>>	

>>>	
 dom('bbb','aaa')	
 	

>>>	
 True	
 	

>>>	

>>>	
 dom('bbb','aab')	
 	

>>>	
 True	
 	

>>>	

>>>	
 dom('bbb','aac')	
 	

>>>	
 False	
 	

>>>	

>>>	
 #	
 Now	
 with	
 the	
 security	
 semantics	
 encoded	
 we	

>>>	
 #	
 see	
 if	
 the	
 dominance	
 function	
 works	
 	

>>>	

>>>	
 #	
 That	
 is,	
 does	
 the	
 subjects	
 security	
 label	
 	

>>>	
 #	
 dominate	
 the	
 information	
 security	
 label?	

>>>	

>>>	
 #	
 in	
 the	
 form	
 dom(subject-­‐label,	
 information-­‐

>>>	
 #	
 label)	

>>>	

>>>	
 print	
 dom(encode('top-­‐secret',	
 'board-­‐level',	
 \	
 	

>>>	
 'global'),	
 encode('secret',	
 'staff',	
 'county'))	

>>>	
 True	

>>>	

>>>	
 print	
 dom(encode('secret',	
 'staff',	
 'county'),\	

>>>	
 encode('top-­‐secret',	
 'board-­‐level',	
 'global'))	

>>>	
 False	

Note the simple test in the dominance function to allow or
disallow user role (Subject) access to the Object. In this case
the ordinal “less than” operation between Subject and Object
utilized, as a relation, would potentially fail the Subjects access
to the Object if found to be true.

We didn’t need to decode the security label semantics to
determine user role access; we just applied a very simple
mathematical function.

Our alternative patented algorithms [6] do the same; they
exploit some mathematical property to allow or disallow access
once the semantics are encoded into the security labels.

IV. CONCLUSION

We have shown an approach where role-based security at an
enterprise level can be further enhanced by implementing
meta-data markings as security labels on User Roles and on
Information (data).

Each security label post the encoding of the security
semantics contains a mathematical property that can be used to
switch (filter) information that users have requested access to.

In our example when comparing a Subject’s (user) label to
the Object’s (information) label, the dominance function used
an encoded mathematical property of ordinal numbers to allow
or disallow individuals and groups to gain access to the
information they requested.

The ordinal number comparison approach we used is simple
and demonstrated the meta-data switching mechanism we
wanted to articulate. However, we do not recommend using
ordinal number properties. There are superior algorithms that
we have patented.

 The notion of the trusted system dominance function allows
multilevel mandatory access controls for individuals and
groups. The metadata-switching framework implementing the
trusted system dominance provides an additional infrastructure
control layer for the enterprise and has high performance
characteristics that enable row level security (filtering) around
any relational database.

A meta-data framework has two defining features:
¥ There is a mathematical property about the data that is

exploited and used for switching.
¥ Multi-Level security semantics is encoded into the

metadata and results in a single label.

ACKNOWLEDGMENT

We would like to thank Morris Levitzke for his proof
reading of the paper.

REFERENCES
[1] Amoroso, E. (1994), Fundamentals of Computer Security Technology,

Prentice Hall, pages 70 – 78, USA.
[2] Bell, David Elliott and La Padula, Leonard J. (1976) Secure Computer

System: Unified Exposition and Multics Interpretation. MITRE
Corporation, USA.

[3] Clark, David D.; and Wilson, David R.; (1987) A Comparison of
Commercial and Military Computer Security Policies; in Proceedings of
the IEEE Symposium on Research in Security and Privacy (SP'87), May
1987, Oakland, CA; IEEE Press, pp. 184–193, USA

[4] Denning, Dorothy E. A (May 1976) lattice model of secure information
flow, Communications of the ACM archive, Volume 19 , Issue 5, pp:
236 – 243, USA.

[5] Ferraiolo, D. and Kuhn, D. (1992). 15th National Computer Security
Conference, Baltimore, Oct 13-16, 1992. pp, 554 – 563, USA.

[6] International Patent Application PCT/AU2008/000702, Secure Keys Pty
Limited, A Security Token and System and Method for Generating And
Decoding The Security Token, 2008, Australia.

